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Chapter 10
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Pointers are the hobgoblin of C++ (and C) programming; seldom has such a simple idea
inspired so much perplexity for so many. But fear not. In this chapter we will try to demystify
pointers and show practical uses for them in C++ programming.

What are pointers for? Here are some common uses:

• Accessing array elements

• Passing arguments to a function when the function needs to modify the original argument

• Passing arrays and strings to functions

• Obtaining memory from the system

• Creating data structures such as linked lists

Pointers are an important feature of C++ (and C), while many other languages, such as Visual
Basic and Java, have no pointers at all. (Java has references, which are sort of watered-down
pointers.) Is this emphasis on pointers really necessary? You can do a lot without them, as their
absence from the preceding chapters demonstrates. Some operations that use pointers in C++
can be carried out in other ways. For example, array elements can be accessed with array nota-
tion rather than pointer notation (we’ll see the difference soon), and a function can modify
arguments passed by reference, as well as those passed by pointers.

However, in some situations pointers provide an essential tool for increasing the power of C++.
A notable example is the creation of data structures such as linked lists and binary trees. In
fact, several key features of C++, such as virtual functions, the new operator, and the this
pointer (discussed in Chapter 11, “Virtual Functions”), require the use of pointers. So, although
you can do a lot of programming in C++ without using pointers, you will find them essential to
obtaining the most from the language.

In this chapter we’ll introduce pointers gradually, starting with fundamental concepts and
working up to complex pointer applications.

If you already know C, you can probably skim over the first half of the chapter. However, you
should read the sections in the second half on the new and delete operators, accessing member
functions using pointers, arrays of pointers to objects, and linked-list objects.

Addresses and Pointers
The ideas behind pointers are not complicated. Here’s the first key concept: Every byte in the
computer’s memory has an address. Addresses are numbers, just as they are for houses on a
street. The numbers start at 0 and go up from there—1, 2, 3, and so on. If you have 1MB of
memory, the highest address is 1,048,575. (Of course you have much more.)

Your program, when it is loaded into memory, occupies a certain range of these addresses. That
means that every variable and every function in your program starts at a particular address.
Figure 10.1 shows how this looks.
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FIGURE 10.1
Memory addresses.

The Address-of Operator &
You can find the address occupied by a variable by using the address-of operator &. Here’s a
short program, VARADDR, that demonstrates how to do this:

// varaddr.cpp
// addresses of variables
#include <iostream>
using namespace std;

int main()
{
int var1 = 11;           //define and initialize
int var2 = 22;           //three variables
int var3 = 33;
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cout << &var1 << endl    //print the addresses
<< &var2 << endl    //of these variables
<< &var3 << endl;

return 0;
}

This simple program defines three integer variables and initializes them to the values 11, 22,
and 33. It then prints out the addresses of these variables.

The actual addresses occupied by the variables in a program depend on many factors, such as
the computer the program is running on, the size of the operating system, and whether any
other programs are currently in memory. For these reasons you probably won’t get the same
addresses we did when you run this program. (You may not even get the same results twice in
a row.) Here’s the output on our machine:

0x8f4ffff4    ← address of var1
0x8f4ffff2    ← address of var2
0x8f4ffff0    ← address of var3

Remember that the address of a variable is not at all the same as its contents. The contents of
the three variables are 11, 22, and 33. Figure 10.2 shows the three variables in memory.

Chapter 10
432

FIGURE 10.2
Addresses and contents of variables.
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The << insertion operator interprets the addresses in hexadecimal arithmetic, as indicated by
the prefix 0x before each number. This is the usual way to show memory addresses. If you
aren’t familiar with the hexadecimal number system, don’t worry. All you really need to know
is that each variable starts at a unique address. However, you might note in the output that each
address differs from the next by exactly 2 bytes. That’s because integers occupy 2 bytes of
memory (on a 16-bit system). If we had used variables of type char, they would have adjacent
addresses, since a char occupies 1 byte; and if we had used type double, the addresses would
have differed by 8 bytes.

The addresses appear in descending order because local variables are stored on the stack,
which grows downward in memory. If we had used global variables, they would have ascend-
ing addresses, since global variables are stored on the heap, which grows upward. Again, you
don’t need to worry too much about these considerations, since the compiler keeps track of the
details for you.

Don’t confuse the address-of operator &, which precedes a variable name in a variable declara-
tion, with the reference operator &, which follows the type name in a function prototype or def-
inition. (References were discussed in Chapter 5, “Functions.”)

Pointer Variables
Addresses by themselves are rather limited. It’s nice to know that we can find out where things
are in memory, as we did in VARADDR, but printing out address values is not all that useful. The
potential for increasing our programming power requires an additional idea: variables that
hold address values. We’ve seen variable types that store characters, integers, floating-point
numbers, and so on. Addresses are stored similarly. A variable that holds an address value is
called a pointer variable, or simply a pointer.

What is the data type of pointer variables? It’s not the same as the variable whose address is
being stored; a pointer to int is not type int. You might think a pointer data type would be
called something like pointer or ptr. However, things are slightly more complicated. The next
program, PTRVAR, shows the syntax for pointer variables.

// ptrvar.cpp
// pointers (address variables)
#include <iostream>
using namespace std;

int main()
{
int var1 = 11;             //two integer variables
int var2 = 22;
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cout << &var1 << endl      //print addresses of variables
<< &var2 << endl << endl;

int* ptr;                  //pointer to integers

ptr = &var1;               //pointer points to var1
cout << ptr << endl;       //print pointer value

ptr = &var2;               //pointer points to var2
cout << ptr << endl;       //print pointer value
return 0;
}

This program defines two integer variables, var1 and var2, and initializes them to the values
11 and 22. It then prints out their addresses.

The program next defines a pointer variable in the line

int* ptr;

To the uninitiated this is a rather bizarre syntax. The asterisk means pointer to. Thus the state-
ment defines the variable ptr as a pointer to int. This is another way of saying that this vari-
able can hold the addresses of integer variables.

What’s wrong with the idea of a general-purpose pointer type that holds pointers to any data
type? If we called it type pointer we could write declarations like

pointer ptr;

The problem is that the compiler needs to know what kind of variable the pointer points to.
(We’ll see why when we talk about pointers and arrays.) The syntax used in C++ allows point-
ers to any type to be declared:

char* cptr;         // pointer to char
int* iptr;          // pointer to int
float* fptr;        // pointer to float
Distance* distptr;  // pointer to user-defined Distance class

and so on.

Syntax Quibbles
We should note that it is common to write pointer definitions with the asterisk closer to the
variable name than to the type.

char *charptr;

It doesn’t matter to the compiler, but placing the asterisk next to the type helps emphasize that
the asterisk is part of the variable type (pointer to char), not part of the name itself.
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If you define more than one pointer of the same type on one line, you need only insert the
type-pointed-to once, but you need to place an asterisk before each variable name.

char* ptr1, * ptr2, * ptr3;  // three variables of type char*

Or you can use the asterisk-next-to-the-name approach.

char *ptr1, *ptr2, *ptr3;  // three variables of type char*

Pointers Must Have a Value
An address like 0x8f4ffff4 can be thought of as a pointer constant. A pointer like ptr can be
thought of as a pointer variable. Just as the integer variable var1 can be assigned the constant
value 11, so can the pointer variable ptr be assigned the constant value 0x8f4ffff4.

When we first define a variable, it holds no value (unless we initialize it at the same time). It
may hold a garbage value, but this has no meaning. In the case of pointers, a garbage value is
the address of something in memory, but probably not of something that we want. So before a
pointer is used, a specific address must be placed in it. In the PTRVAR program, ptr is first
assigned the address of var1 in the line

ptr = &var1;    ← put address of var1 in ptr

Following this, the program prints out the value contained in ptr, which should be the same
address printed for &var1. The same pointer variable ptr is then assigned the address of var2,
and this value is printed out. Figure 10.3 shows the operation of the PTRVAR program. Here’s
the output of PTRVAR:

0x8f51fff4    ← address of var1
0x8f51fff2    ← address of var2

0x8f51fff4    ← ptr set to address of var1
0x8f51fff2    ← ptr set to address of var2

To summarize: A pointer can hold the address of any variable of the correct type; it’s a recepta-
cle awaiting an address. However, it must be given some value, or it will point to an address
we don’t want it to point to, such as into our program code or the operating system. Rogue
pointer values can result in system crashes and are difficult to debug, since the compiler gives
no warning. The moral: Make sure you give every pointer variable a valid address value before
using it.
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FIGURE 10.3
Changing values in ptr.

Accessing the Variable Pointed To
Suppose that we don’t know the name of a variable but we do know its address. Can we access
the contents of the variable? (It may seem like mismanagement to lose track of variable names,
but we’ll soon see that there are many variables whose names we don’t know.)

There is a special syntax to access the value of a variable using its address instead of its name.
Here’s an example program, PTRACC, that shows how it’s done:

// ptracc.cpp
// accessing the variable pointed to
#include <iostream>
using namespace std;

int main()
{
int var1 = 11;             //two integer variables
int var2 = 22;
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int* ptr;                  //pointer to integers

ptr = &var1;               //pointer points to var1
cout << *ptr << endl;      //print contents of pointer (11)

ptr = &var2;               //pointer points to var2
cout << *ptr << endl;      //print contents of pointer (22)
return 0;
}

This program is very similar to PTRVAR, except that instead of printing the address values in
ptr, we print the integer value stored at the address that’s stored in ptr. Here’s the output:

11
22

The expression that accesses the variables var1 and var2 is *ptr, which occurs in each of the
two cout statements.

When an asterisk is used in front of a variable name, as it is in the *ptr expression, it is called
the dereference operator (or sometimes the indirection operator). It means the value of the
variable pointed to by. Thus the expression *ptr represents the value of the variable pointed to
by ptr. When ptr is set to the address of var1, the expression *ptr has the value 11, since
var1 is 11. When ptr is changed to the address of var2, the expression *ptr acquires the value
22, since var2 is 22. Another name for the dereference operator is the contents of operator,
which is another way to say the same thing. Figure 10.4 shows how this looks.

You can use a pointer not only to display a variable’s value, but also to perform any operation
you would perform on the variable directly. Here’s a program, PTRTO, that uses a pointer to
assign a value to a variable, and then to assign that value to another variable:

// ptrto.cpp
// other access using pointers
#include <iostream>
using namespace std;

int main()
{
int var1, var2;          //two integer variables
int* ptr;                //pointer to integers

ptr = &var1;             //set pointer to address of var1
*ptr = 37;               //same as var1=37
var2 = *ptr;             //same as var2=var1

cout << var2 << endl;    //verify var2 is 37
return 0;
}
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FIGURE 10.4
Access via pointer.

Remember that the asterisk used as the dereference operator has a different meaning than the
asterisk used to declare pointer variables. The dereference operator precedes the variable and
means value of the variable pointed to by. The asterisk used in a declaration means pointer to.

int* ptr;    //declaration: pointer to int
*ptr = 37;   //indirection: value of variable pointed to by ptr

Using the dereference operator to access the value stored in an address is called indirect
addressing, or sometimes dereferencing, the pointer.

Here’s a capsule summary of what we’ve learned so far:

int v;        //defines variable v of type int
int* p;       //defines p as a pointer to int
p = &v;       //assigns address of variable v to pointer p
v = 3;        //assigns 3 to v
*p = 3;       //also assigns 3 to v
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The last two statements show the difference between normal or direct addressing, where we
refer to a variable by name, and pointer or indirect addressing, where we refer to the same
variable using its address.

In the example programs we’ve shown so far in this chapter, there’s really no advantage to
using the pointer expression to access variables, since we can access them directly. The value
of pointers becomes evident when you can’t access a variable directly, as we’ll see later.

Pointer to void
Before we go on to see pointers at work, we should note one peculiarity of pointer data types.
Ordinarily, the address that you put in a pointer must be the same type as the pointer. You can’t
assign the address of a float variable to a pointer to int, for example:

float flovar = 98.6;
int* ptrint = &flovar;  //ERROR: can’t assign float* to int*

However, there is an exception to this. There is a sort of general-purpose pointer that can point
to any data type. This is called a pointer to void, and is defined like this:

void* ptr;   //ptr can point to any data type

Such pointers have certain specialized uses, such as passing pointers to functions that operate
independently of the data type pointed to.

The next example uses a pointer to void and also shows that, if you don’t use void, you must
be careful to assign pointers an address of the same type as the pointer. Here’s the listing for
PTRVOID:

// ptrvoid.cpp
// pointers to type void
#include <iostream>
using namespace std;

int main()
{
int intvar;                //integer variable
float flovar;              //float variable

int* ptrint;               //define pointer to int
float* ptrflo;             //define pointer to float
void* ptrvoid;             //define pointer to void

ptrint = &intvar;          //ok, int* to int*
// ptrint = &flovar;          //error, float* to int*
// ptrflo = &intvar;          //error, int* to float*

ptrflo = &flovar;          //ok, float* to float*
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ptrvoid = &intvar;         //ok, int* to void*
ptrvoid = &flovar;         //ok, float* to void*
return 0;
}

You can assign the address of intvar to ptrint because they are both type int*, but you can’t
assign the address of flovar to ptrint because the first is type float* and the second is type
int*. However, ptrvoid can be given any pointer value, such as int*, because it is a pointer to
void.

If for some unusual reason you really need to assign one kind of pointer type to another, you
can use the reinterpret_cast. For the lines commented out in PTRVOID, that would look like
this:

ptrint = reinterpret_cast<int*>(flovar);
ptrflo = reinterpret_cast<float*>(intvar);

The use of reinterpret_cast in this way is not recommended, but occasionally it’s the only
way out of a difficult situation. Static casts won’t work with pointers. Old-style C casts can be
used, but are always a bad idea in C++. We’ll see examples of reinterpret_cast in Chapter
12, “Streams and Files,” where it’s used to alter the way a data buffer is interpreted.

Pointers and Arrays
There is a close association between pointers and arrays. We saw in Chapter 7, “Arrays and
Strings,” how array elements are accessed. The following program, ARRNOTE, provides a
review.

// arrnote.cpp
// array accessed with array notation
#include <iostream>
using namespace std;

int main()
{                                       //array
int intarray[5] = { 31, 54, 77, 52, 93 };

for(int j=0; j<5; j++)                  //for each element,
cout << intarray[j] << endl;         //print value

return 0;
}

The cout statement prints each array element in turn. For instance, when j is 3, the expression
intarray[j] takes on the value intarray[3] and accesses the fourth array element, the inte-
ger 52. Here’s the output of ARRNOTE:
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31
54
77
52
93

Surprisingly, array elements can be accessed using pointer notation as well as array notation.
The next example, PTRNOTE, is similar to ARRNOTE except that it uses pointer notation.

// ptrnote.cpp
// array accessed with pointer notation
#include <iostream>
using namespace std;

int main()
{                                       //array
int intarray[5] = { 31, 54, 77, 52, 93 };

for(int j=0; j<5; j++)                  //for each element,
cout << *(intarray+j) << endl;       //print value

return 0;
}

The expression *(intarray+j) in PTRNOTE has exactly the same effect as intarray[j] in
ARRNOTE, and the output of the programs is identical. But how do we interpret the expression
*(intarray+j)? Suppose j is 3, so the expression is equivalent to *(intarray+3). We want
this to represent the contents of the fourth element of the array (52). Remember that the name
of an array is its address. The expression intarray+j is thus an address with something added
to it. You might expect that intarray+3 would cause 3 bytes to be added to intarray. But that
doesn’t produce the result we want: intarray is an array of integers, and 3 bytes into this
array is the middle of the second element, which is not very useful. We want to obtain the
fourth integer in the array, not the fourth byte, as shown in Figure 10.5. (This figure assumes
2-byte integers.)

The C++ compiler is smart enough to take the size of the data into account when it performs
arithmetic on data addresses. It knows that intarray is an array of type int because it was
declared that way. So when it sees the expression intarray+3, it interprets it as the address of
the fourth integer in intarray, not the fourth byte.

But we want the value of this fourth array element, not the address. To take the value, we use
the dereference operator (*). The resulting expression, when j is 3, is *(intarray+3), which is
the content of the fourth array element, or 52.
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FIGURE 10.5
Counting by integers.

Now we see why a pointer declaration must include the type of the variable pointed to. The
compiler needs to know whether a pointer is a pointer to int or a pointer to double so that it
can perform the correct arithmetic to access elements of the array. It multiplies the index value
by 2 in the case of type int, but by 8 in the case of double.

Pointer Constants and Pointer Variables
Suppose that, instead of adding j to intarray to step through the array addresses, you wanted
to use the increment operator. Could you write *(intarray++)?

The answer is no, and the reason is that you can’t increment a constant (or indeed change it in
any way). The expression intarray is the address where the system has chosen to place your
array, and it will stay at this address until the program terminates. intarray is a pointer con-
stant. You can’t say intarray++ any more than you can say 7++. (In a multitasking system,
variable addresses may change during program execution. An active program may be swapped
out to disk and then reloaded at a different memory location. However, this process is invisible
to your program.)

But while you can’t increment an address, you can increment a pointer that holds an address.
The next example, PTRINC, shows how:
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// ptrinc.cpp
// array accessed with pointer
#include <iostream>
using namespace std;

int main()
{
int intarray[] = { 31, 54, 77, 52, 93 }; //array
int* ptrint;                             //pointer to int
ptrint = intarray;                       //points to intarray

for(int j=0; j<5; j++)                   //for each element,
cout << *(ptrint++) << endl;          //print value

return 0;
}

Here we define a pointer to int—ptrint—and give it the value intarray, the address of the
array. Now we can access the contents of the array elements with the expression

*(ptrint++)

The variable ptrint starts off with the same address value as intarray, thus allowing the first
array element, intarray[0], which has the value 31, to be accessed as before. But, because
ptrint is a variable and not a constant, it can be incremented. After it is incremented, it points
to the second array element, intarray[1]. The expression *(ptrint++) then represents the
contents of the second array element, or 54. The loop causes the expression to access each
array element in turn. The output of PTRINC is the same as that for PTRNOTE.

Pointers and Functions
In Chapter 5 we noted that there are three ways to pass arguments to a function: by value, by
reference, and by pointer. If the function is intended to modify variables in the calling pro-
gram, these variables cannot be passed by value, since the function obtains only a copy of the
variable. However, either a reference argument or a pointer can be used in this situation.

Passing Simple Variables
We’ll first review how arguments are passed by reference, and then compare this to passing
pointer arguments. The PASSREF program shows passing by reference.

// passref.cpp
// arguments passed by reference
#include <iostream>
using namespace std;

int main()
{
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void centimize(double&);    //prototype

double var = 10.0;          //var has value of 10 inches
cout << “var = “ << var << “ inches” << endl;

centimize(var);             //change var to centimeters
cout << “var = “ << var << “ centimeters” << endl;
return 0;
}

//--------------------------------------------------------------
void centimize(double& v)

{
v *= 2.54;                  //v is the same as var
}

Here we want to convert a variable var in main() from inches to centimeters. We pass the vari-
able by reference to the function centimize(). (Remember that the & following the data type
double in the prototype for this function indicates that the argument is passed by reference.)
The centimize() function multiplies the original variable by 2.54. Notice how the function
refers to the variable. It simply uses the argument name v; v and var are different names for
the same thing.

Once it has converted var to centimeters, main() displays the result. Here’s the output of 
PASSREF:

var = 10 inches
var = 25.4 centimeters

The next example, PASSPTR, shows an equivalent situation when pointers are used:

// passptr.cpp
// arguments passed by pointer
#include <iostream>
using namespace std;

int main()
{
void centimize(double*);    //prototype

double var = 10.0;          //var has value of 10 inches
cout << “var = “ << var << “ inches” << endl;

centimize(&var);            //change var to centimeters
cout << “var = “ << var << “ centimeters” << endl;
return 0;
}

//--------------------------------------------------------------
void centimize(double* ptrd)
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{
*ptrd *= 2.54;              //*ptrd is the same as var
}

The output of PASSPTR is the same as that of PASSREF.

The function centimize() is declared as taking an argument that is a pointer to double:

void centimize(double*)   // argument is pointer to double

When main() calls the function, it supplies the address of the variable as the argument:

centimize(&var);

Remember that this is not the variable itself, as it is in passing by reference, but the variable’s
address.

Because the centimize() function is passed an address, it must use the dereference operator,
*ptrd, to access the value stored at this address:

*ptrd *= 2.54;  // multiply the contents of ptrd by 2.54

Of course this is the same as

*ptrd = *ptrd * 2.54;  // multiply the contents of ptrd by 2.54

where the standalone asterisk means multiplication. (This operator really gets around.)

Since ptrd contains the address of var, anything done to *ptrd is actually done to var.
Figure 10.6 shows how changing *ptrd in the function changes var in the calling program.
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FIGURE 10.6
Pointer passed to function.
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Passing a pointer as an argument to a function is in some ways similar to passing a reference.
They both permit the variable in the calling program to be modified by the function. However,
the mechanism is different. A reference is an alias for the original variable, while a pointer is
the address of the variable.

Passing Arrays
We’ve seen numerous examples, starting in Chapter 7, of arrays passed as arguments to func-
tions, and their elements being accessed by the function. Until this chapter, since we had not
yet learned about pointers, this was done using array notation. However, it’s more common to
use pointer notation instead of array notation when arrays are passed to functions. The PASSARR

program shows how this looks:

// passarr.cpp
// array passed by pointer
#include <iostream>
using namespace std;
const int MAX = 5;           //number of array elements

int main()
{
void centimize(double*);  //prototype

double varray[MAX] = { 10.0, 43.1, 95.9, 59.7, 87.3 };

centimize(varray);        //change elements of varray to cm

for(int j=0; j<MAX; j++)  //display new array values
cout << “varray[“ << j << “]=”

<< varray[j] << “ centimeters” << endl;
return 0;
}

//--------------------------------------------------------------
void centimize(double* ptrd)

{
for(int j=0; j<MAX; j++)

*ptrd++ *= 2.54;       //ptrd points to elements of varray
}

The prototype for the function is the same as in PASSPTR; the function’s single argument is a
pointer to double. In array notation this is written as

void centimize(double[]);

That is, double* is equivalent here to double[], although the pointer syntax is more com-
monly used.
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Since the name of an array is the array’s address, there is no need for the address operator &
when the function is called:

centimize(varray);  // pass array address

In centimize(), this array address is placed in the variable ptrd. To point to each element of
the array in turn, we need only increment ptrd:

*ptrd++ *= 2.54;

Figure 10.7 shows how the array is accessed. Here’s the output of PASSARR:

varray[0]=25.4 centimeters
varray[1]=109.474 centimeters
varray[2]=243.586 centimeters
varray[3]=151.638 centimeters
varray[4]=221.742 centimeters
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FIGURE 10.7
Accessing an array from a function.

Here’s a syntax question: How do we know that the expression *ptrd++ increments the pointer
and not the pointer contents? In other words, does the compiler interpret it as *(ptrd++),
which is what we want, or as (*ptrd)++? It turns out that * (when used as the dereference
operator) and ++ have the same precedence. However, operators of the same precedence are
distinguished in a second way: by associativity. Associativity is concerned with whether the
compiler performs operations starting with an operator on the right or an operator on the left.
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If a group of operators has right associativity, the compiler performs the operation on the right
side of the expression first, then works its way to the left. The unary operators such as * and ++

have right associativity, so the expression is interpreted as *(ptrd++), which increments the
pointer, not what it points to. That is, the pointer is incremented first and the dereference oper-
ator is applied to the resulting address.

Sorting Array Elements
As a further example of using pointers to access array elements, let’s see how to sort the con-
tents of an array. We’ll use two program examples—the first to lay the groundwork, and the
second, an expansion of the first, to demonstrate the sorting process.

Ordering with Pointers
The first program is similar to the REFORDER program in Chapter 6, “Objects and Classes,”
except that it uses pointers instead of references. It orders two numbers passed to it as argu-
ments, exchanging them if the second is smaller than the first. Here’s the listing for PTRORDER:

// ptrorder.cpp
// orders two arguments using pointers
#include <iostream>
using namespace std;

int main()
{
void order(int*, int*);         //prototype

int n1=99, n2=11;               //one pair ordered, one not
int n3=22, n4=88;

order(&n1, &n2);                //order each pair of numbers
order(&n3, &n4);

cout << “n1=” << n1 << endl;    //print out all numbers
cout << “n2=” << n2 << endl;
cout << “n3=” << n3 << endl;
cout << “n4=” << n4 << endl;
return 0;
}

//--------------------------------------------------------------
void order(int* numb1, int* numb2) //orders two numbers

{
if(*numb1 > *numb2)             //if 1st larger than 2nd,

{
int temp = *numb1;           //swap them
*numb1 = *numb2;
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*numb2 = temp;
}

}

The function order() works the same as it did in REFORDER, except that it is passed the
addresses of the numbers to be ordered, and it accesses the numbers using pointers. That is,
*numb1 accesses the number in main() passed as the first argument, and *numb2 accesses the
second.

Here’s the output from PTRORDER:

n1=11 ← this and
n2=99 ← this are swapped, since they weren’t in order
n3=22 ← this and 
n4=88 ← this are not swapped, since they were in order

We’ll use the order() function from PTRORDER in our next example program, PTRSORT, which
sorts an array of integers.

// ptrsort.cpp
// sorts an array using pointers
#include <iostream>
using namespace std;

int main()
{
void bsort(int*, int);       //prototype
const int N = 10;            //array size

//test array
int arr[N] = { 37, 84, 62, 91, 11, 65, 57, 28, 19, 49 };

bsort(arr, N);               //sort the array

for(int j=0; j<N; j++)       //print out sorted array
cout << arr[j] << “ “;

cout << endl;
return 0;
}

//--------------------------------------------------------------
void bsort(int* ptr, int n)

{
void order(int*, int*);      //prototype
int j, k;                    //indexes to array

for(j=0; j<n-1; j++)         //outer loop
for(k=j+1; k<n; k++)      //inner loop starts at outer

order(ptr+j, ptr+k);   //order the pointer contents
}
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//--------------------------------------------------------------
void order(int* numb1, int* numb2)  //orders two numbers

{
if(*numb1 > *numb2)          //if 1st larger than 2nd,

{
int temp = *numb1;        //swap them
*numb1 = *numb2;
*numb2 = temp;
}

}

The array arr of integers in main() is initialized to unsorted values. The address of the array,
and the number of elements, are passed to the bsort() function. This sorts the array, and the
sorted values are then printed. Here’s the output of the PTRSORT:

11 19 28 37 49 57 62 65 84 91

The Bubble Sort
The bsort() function sorts the array using a variation of the bubble sort. This is a simple
(although notoriously slow) approach to sorting. Here’s how it works, assuming we want to
arrange the numbers in the array in ascending order. First the first element of the array
(arr[0]) is compared in turn with each of the other elements (starting with the second). If it’s
greater than any of them, the two are swapped. When this is done we know that at least the
first element is in order; it’s now the smallest element. Next the second element is compared in
turn with all the other elements, starting with the third, and again swapped if it’s bigger. When
we’re done we know that the second element has the second-smallest value. This process is
continued for all the elements until the next-to-the-last, at which time the array is assumed to
be ordered. Figure 10.8 shows the bubble sort in action (with fewer items than in PTRSORT).

In PTRSORT, the number in the first position, 37, is compared with each element in turn, and
swapped with 11. The number in the second position, which starts off as 84, is compared with
each element. It’s swapped with 62; then 62 (which is now in the second position) is swapped
with 37, 37 is swapped with 28, and 28 is swapped with 19. The number in the third position,
which is 84 again, is swapped with 62, 62 is swapped with 57, 57 with 37, and 37 with 28. The
process continues until the array is sorted.

The bsort() function in PTRSORT consists of two nested loops, each of which controls a
pointer. The outer loop uses the loop variable j, and the inner one uses k. The expressions
ptr+j and ptr+k point to various elements of the array, as determined by the loop variables.
The expression ptr+j moves down the array, starting at the first element (the top) and stepping
down integer by integer until one short of the last element (the bottom). For each position
taken by ptr+j in the outer loop, the expression ptr+k in the inner loop starts pointing one
below ptr+j and moves down to the bottom of the array. Each time through the inner loop, the
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elements pointed to by ptr+j and ptr+k are compared, using the order() function, and if the
first is greater than the second, they’re swapped. Figure 10.9 shows this process.
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FIGURE 10.8
Operation of the bubble sort.

The PTRSORT example begins to reveal the power of pointers. They provide a consistent and
efficient way to operate on array elements and other variables whose names aren’t known to a
particular function.
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FIGURE 10.9
Operation of PTRSORT.

Pointers and C-Type Strings
As we noted in Chapter 7, C-type strings are simply arrays of type char. Thus pointer notation
can be applied to the characters in strings, just as it can to the elements of any array.

Pointers to String Constants
Here’s an example, TWOSTR, in which two strings are defined, one using array notation as
we’ve seen in previous examples, and one using pointer notation:

// twostr.cpp
// strings defined using array and pointer notation
#include <iostream>
using namespace std;

int main()
{
char str1[] = “Defined as an array”;
char* str2 = “Defined as a pointer”;

cout << str1 << endl;    // display both strings
cout << str2 << endl;

// str1++;                  // can’t do this; str1 is a constant
str2++;                  // this is OK, str2 is a pointer

cout << str2 << endl;    // now str2 starts “efined...”
return 0;
}
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In many ways these two types of definition are equivalent. You can print out both strings as the
example shows, use them as function arguments, and so on. But there is a subtle difference:
str1 is an address—that is, a pointer constant—while str2 is a pointer variable. So str2 can
be changed, while str1 cannot, as shown in the program. Figure 10.10 shows how these two
kinds of strings look in memory.
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FIGURE 10.10
Strings as arrays and pointers.

We can increment str2, since it is a pointer, but once we do, it no longer points to the first
character in the string. Here’s the output of TWOSTR:

Defined as an array
Defined as a pointer
efined as a pointer    ← following str2++ (‘D’ is gone)

A string defined as a pointer is considerably more flexible than one defined as an array. The
following examples will make use of this flexibility.

Strings as Function Arguments
Here’s an example that shows a string used as a function argument. The function simply prints
the string, by accessing each character in turn. Here’s the listing for PTRSTR:

// ptrstr.cpp
// displays a string with pointer notation
#include <iostream>
using namespace std;
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int main()
{
void dispstr(char*);     //prototype
char str[] = “Idle people have the least leisure.”;

dispstr(str);            //display the string
return 0;
}

//--------------------------------------------------------------
void dispstr(char* ps)

{
while( *ps )             //until null character,

cout << *ps++;        //print characters
cout << endl;
}

The array address str is used as the argument in the call to function dispstr(). This address
is a constant, but since it is passed by value, a copy of it is created in dispstr(). This copy is
a pointer, ps. A pointer can be changed, so the function increments ps to display the string.
The expression *ps++ returns the successive characters of the string. The loop cycles until it
finds the null character (‘\0’) at the end of the string. Since this has the value 0, which repre-
sents false, the while loop terminates at this point.

Copying a String Using Pointers
We’ve seen examples of pointers used to obtain values from an array. Pointers can also be used
to insert values into an array. The next example, COPYSTR, demonstrates a function that copies
one string to another:

// copystr.cpp
// copies one string to another with pointers
#include <iostream>
using namespace std;

int main()
{
void copystr(char*, const char*);  //prototype
char* str1 = “Self-conquest is the greatest victory.”;
char str2[80];               //empty string

copystr(str2, str1);         //copy str1 to str2
cout << str2 << endl;        //display str2
return 0;
}
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//--------------------------------------------------------------
void copystr(char* dest, const char* src)

{
while( *src )                //until null character,

*dest++ = *src++;         //copy chars from src to dest
*dest = ‘\0’;                //terminate dest
}

Here the main() part of the program calls the function copystr() to copy str1 to str2. In this
function the expression

*dest++ = *src++;

takes the value at the address pointed to by src and places it in the address pointed to by dest.
Both pointers are then incremented, so the next time through the loop the next character will
be transferred. The loop terminates when a null character is found in src; at this point a null is
inserted in dest and the function returns. Figure 10.11 shows how the pointers move through
the strings.
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FIGURE 10.11
Operation of COPYSTR.
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Library String Functions
Many of the library functions we have already used for strings have string arguments that are
specified using pointer notation. As an example you can look at the description of strcpy() in
your compiler’s documentation (or in the STRING.H header file). This function copies one string
to another; we can compare it with our homemade copystr() function in the COPYSTR exam-
ple. Here’s the syntax for the strcpy() library function:

char* strcpy(char* dest, const char* src);

This function takes two arguments of type char*. (The next section, “The const Modifier and
Pointers,” explains the meaning of const in this context.) The strcpy() function also returns a
pointer to char; this is the address of the dest string. In other respects, this function works
very much like our homemade copystr() function.

The const Modifier and Pointers
The use of the const modifier with pointer declarations can be confusing, because it can mean
one of two things, depending on where it’s placed. The following statements show the two pos-
sibilities:

const int* cptrInt;  //cptrInt is a pointer to constant int
int* const ptrcInt;  //ptrcInt is a constant pointer to int

Following the first declaration, you cannot change the value of whatever cptrInt points to,
although you can change cptrInt itself. Following the second declaration, you can change
what ptrcInt points to, but you cannot change the value of ptrcInt itself. You can remember
the difference by reading from right to left, as indicated in the comments. You can use const in
both positions to make the pointer and what it points to constant.

In the declaration of strcpy() just shown, the argument const char* src specifies that the
characters pointed to by src cannot be changed by strcpy(). It does not imply that the src
pointer itself cannot be modified. To do that the argument declaration would need to be char*
const src.

Arrays of Pointers to Strings
Just as there are arrays of variables of type int or type float, there can also be arrays of
pointers. A common use for this construction is an array of pointers to strings.

In Chapter 7 the STRARAY program demonstrated an array of char* strings. As we noted, there
is a disadvantage to using an array of strings, in that the subarrays that hold the strings must all
be the same length, so space is wasted when strings are shorter than the length of the subarrays
(see Figure 7.10 in Chapter 7).
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Let’s see how to use pointers to solve this problem. We will modify STRARAY to create an array
of pointers to strings, rather than an array of strings. Here’s the listing for PTRTOSTR:

// ptrtostr.cpp
// an array of pointers to strings
#include <iostream>
using namespace std;
const int DAYS = 7;             //number of pointers in array

int main()
{                            //array of pointers to char
char* arrptrs[DAYS] = { “Sunday”, “Monday”, “Tuesday”,

“Wednesday”, “Thursday”,
“Friday”, “Saturday”  };

for(int j=0; j<DAYS; j++)    //display every string
cout << arrptrs[j] << endl;

return 0;
}

The output of this program is the same as that for STRARAY:

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

When strings are not part of an array, C++ places them contiguously in memory, so there is no
wasted space. However, to find the strings, there must be an array that holds pointers to them.
A string is itself an array of type char, so an array of pointers to strings is an array of pointers
to char. That is the meaning of the definition of arrptrs in PTRTOSTR. Now recall that a string
is always represented by a single address: the address of the first character in the string. It is
these addresses that are stored in the array. Figure 10.12 shows how this looks.
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FIGURE 10.12
Array of pointers and strings.

Memory Management: new and delete
We’ve seen many examples where arrays are used to set aside memory. The statement

int arr1[100];

reserves memory for 100 integers. Arrays are a useful approach to data storage, but they have a
serious drawback: We must know at the time we write the program how big the array will be.
We can’t wait until the program is running to specify the array size. The following approach
won’t work:
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cin >> size;     // get size from user
int arr[size];   // error; array size must be a constant

The compiler requires the array size to be a constant.

But in many situations we don’t know how much memory we need until runtime. We might
want to store a string that was typed in by the user, for example. In this situation we can define
an array sized to hold the largest string we expect, but this wastes memory. (As we’ll learn in
Chapter 15, “The Standard Template Library,” you can also use a vector, which is a sort of
expandable array.)

The new Operator
C++ provides a different approach to obtaining blocks of memory: the new operator. This ver-
satile operator obtains memory from the operating system and returns a pointer to its starting
point. The NEWINTRO example shows how new is used:

// newintro.cpp
// introduces operator new
#include <iostream>
#include <cstring>            //for strlen
using namespace std;

int main()
{
char* str = “Idle hands are the devil’s workshop.”;
int len = strlen(str);     //get length of str

char* ptr;                 //make a pointer to char
ptr = new char[len+1];     //set aside memory: string + ‘\0’

strcpy(ptr, str);          //copy str to new memory area ptr

cout << “ptr=” << ptr << endl;  //show that ptr is now in str

delete[] ptr;              //release ptr’s memory
return 0;
}

The expression

ptr = new char[len+1];

returns a pointer to a section of memory just large enough to hold the string str, whose length
len we found with the strlen() library function, plus an extra byte for the null character ‘\0’
at the end of the string. Figure 10.13 shows the syntax of a statement using the new operator.
Remember to use brackets around the size; the compiler won’t object if you mistakenly use
parentheses, but the results will be incorrect.
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FIGURE 10.14
Memory obtained by the new operator.
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FIGURE 10.13
Syntax of the new operator.

Figure 10.14 shows the memory obtained by new and the pointer to it.
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In NEWINTRO we use strcpy() to copy string str to the newly created memory area pointed to
by ptr. Since we made this area equal in size to the length of str, the string fits exactly. The
output of NEWINTRO is

ptr=Idle hands are the devil’s workshop.

C programmers will recognize that new plays a role similar to the malloc() family of library
functions. The new approach is superior in that it returns a pointer to the appropriate data type,
while malloc()’s pointer must be cast to the appropriate type. There are other advantages as
well.

C programmers may wonder whether there is a C++ equivalent to realloc() for changing the
size of memory that has already been reallocated. Sorry, there’s no renew in C++. You’ll need
to fall back on the ploy of creating a larger (or smaller) space with new, and copying your data
from the old area to the new one.

The delete Operator
If your program reserves many chunks of memory using new, eventually all the available mem-
ory will be reserved and the system will crash. To ensure safe and efficient use of memory, the
new operator is matched by a corresponding delete operator that returns memory to the oper-
ating system. In NEWINTRO the statement

delete[] ptr;

returns to the system whatever memory was pointed to by ptr.

Actually, there is no need for this operator in NEWINTRO, since memory is automatically
returned when the program terminates. However, suppose you use new in a function. If the
function uses a local variable as a pointer to this memory, the pointer will be destroyed when
the function terminates, but the memory will be left as an orphan, taking up space that is inac-
cessible to the rest of the program. Thus it is always good practice, and often essential, to
delete memory when you’re through with it.

Deleting the memory doesn’t delete the pointer that points to it (str in NEWINTRO), and doesn’t
change the address value in the pointer. However, this address is no longer valid; the memory
it points to may be changed to something entirely different. Be careful that you don’t use
pointers to memory that has been deleted.

The brackets following delete indicate that we’re deleting an array. If you create a single
object with new, you don’t need the brackets when you delete it.

ptr = new SomeClass;  // allocate a single object
. . .
delete ptr;           // no brackets following delete
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However, don’t forget the brackets when deleting arrays of objects. Using them ensures that all
the members of the array are deleted, and that the destructor is called for each one.

A String Class Using new
The new operator often appears in constructors. As an example, we’ll modify the String class,
last seen in examples such as STRPLUS in Chapter 8, “Operator Overloading.” You may recall
that a potential defect of that class was that all String objects occupied the same fixed amount
of memory. A string shorter than this fixed length wasted memory, and a longer string—if one
were mistakenly generated—could crash the system by extending beyond the end of the array.
Our next example uses new to obtain exactly the right amount of memory. Here’s the listing for
NEWSTR:

// newstr.cpp
// using new to get memory for strings
#include <iostream>
#include <cstring>       //for strcpy(), etc
using namespace std;
////////////////////////////////////////////////////////////////
class String             //user-defined string type

{
private:

char* str;                    //pointer to string
public:

String(char* s)               //constructor, one arg
{
int length = strlen(s);    //length of string argument
str = new char[length+1];  //get memory
strcpy(str, s);            //copy argument to it
}

~String()                     //destructor
{
cout << “Deleting str.\n”;
delete[] str;              //release memory
}

void display()                //display the String
{
cout << str << endl;
}

};
////////////////////////////////////////////////////////////////
int main()

{                                //uses 1-arg constructor
String s1 = “Who knows nothing doubts nothing.”;
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cout << “s1=”;                   //display string
s1.display();
return 0;
}

The output from this program is

s1=Who knows nothing doubts nothing.
Deleting str.

The String class has only one data item: a pointer to char called str. This pointer will point
to the string held by the String object. There is no array within the object to hold the string.
The string is stored elsewhere; only the pointer to it is a member of String.

Constructor in NEWSTR
The constructor in this example takes a normal char* string as its argument. It obtains space in
memory for this string with new; str points to the newly obtained memory. The constructor
then uses strcpy() to copy the string into this new space.

Destructor in NEWSTR
We haven’t seen many destructors in our examples so far, but now that we’re allocating mem-
ory with new, destructors become important. If we allocate memory when we create an object,
it’s reasonable to deallocate the memory when the object is no longer needed. As you may
recall from Chapter 6, a destructor is a routine that is called automatically when an object is
destroyed. The destructor in NEWSTR looks like this:

~String()
{
cout << “Deleting str.”;
delete[] str;
}

This destructor gives back to the system the memory obtained when the object was created.
You can tell from the program’s output that the destructor executed at the end of the program.
Objects (like other variables) are typically destroyed when the function in which they were
defined terminates. This destructor ensures that memory obtained by the String object will be
returned to the system, and not left in limbo, when the object is destroyed.

We should note a potential glitch in using destructors as shown in NEWSTR. If you copy one
String object to another, say with a statement like s2 = s1, you’re really only copying the
pointer to the actual (char*) string. Both objects now point to the same string in memory. But
if you now delete one string, the destructor will delete the char* string, leaving the other
object with an invalid pointer. This can be subtle, because objects can be deleted in non-
obvious ways, such as when a function in which a local object has been created returns. In
Chapter 11 we’ll see how to make a smarter destructor that counts how many String objects
are pointing to a string.
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Pointers to Objects
Pointers can point to objects as well as to simple data types and arrays. We’ve seen many
examples of objects defined and given a name, in statements like

Distance dist;

where an object called dist is defined to be of the Distance class.

Sometimes, however, we don’t know, at the time that we write the program, how many objects
we want to create. When this is the case we can use new to create objects while the program is
running. As we’ve seen, new returns a pointer to an unnamed object. Let’s look at a short exam-
ple program, ENGLPTR, that compares the two approaches to creating objects.

// englptr.cpp
// accessing member functions by pointer
#include <iostream>
using namespace std;
////////////////////////////////////////////////////////////////
class Distance              //English Distance class

{
private:

int feet;
float inches;

public:
void getdist()        //get length from user

{
cout << “\nEnter feet: “;  cin >> feet;
cout << “Enter inches: “;  cin >> inches;
}

void showdist()       //display distance
{ cout << feet << “\’-” << inches << ‘\”’; }

};
////////////////////////////////////////////////////////////////
int main()

{
Distance dist;           //define a named Distance object
dist.getdist();          //access object members
dist.showdist();         //   with dot operator

Distance* distptr;       //pointer to Distance
distptr = new Distance;  //points to new Distance object
distptr->getdist();      //access object members
distptr->showdist();     //   with -> operator
cout << endl;
return 0;
}
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This program uses a variation of the English Distance class seen in previous chapters. The
main() function defines dist, uses the Distance member function getdist() to get a distance
from the user, and then uses showdist() to display it.

Referring to Members
ENGLPTR then creates another object of type Distance using the new operator, and returns a
pointer to it called distptr.

The question is, how do we refer to the member functions in the object pointed to by distptr?
You might guess that we would use the dot (.) membership-access operator, as in

distptr.getdist();   // won’t work; distptr is not a variable

but this won’t work. The dot operator requires the identifier on its left to be a variable. Since
distptr is a pointer to a variable, we need another syntax. One approach is to dereference (get
the contents of the variable pointed to by) the pointer:

(*distptr).getdist();  // ok but inelegant

However, this is slightly cumbersome because of the parentheses. (The parentheses are neces-
sary because the dot operator (.) has higher precedence than the dereference operator (*). An
equivalent but more concise approach is furnished by the membership-access operator, which
consists of a hyphen and a greater-than sign:

distptr->getdist();   // better approach

As you can see in ENGLPTR, the -> operator works with pointers to objects in just the same way
that the . operator works with objects. Here’s the output of the program:

Enter feet: 10 ← this object uses the dot operator
Enter inches: 6.25
10’-6.25”

Enter feet: 6    ← this object uses the -> operator
Enter inches: 4.75
6’-4.75”

Another Approach to new
You may come across another—less common—approach to using new to obtain memory for
objects.

Since new can return a pointer to an area of memory that holds an object, we should be able to
refer to the original object by dereferencing the pointer. The ENGLREF example shows how this
is done.
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// englref.cpp
// dereferencing the pointer returned by new
#include <iostream>
using namespace std;
////////////////////////////////////////////////////////////////
class Distance                    // English Distance class

{
private:

int feet;
float inches;

public:
void getdist()              // get length from user

{
cout << “\nEnter feet: “;  cin >> feet;
cout << “Enter inches: “;  cin >> inches;
}

void showdist()             // display distance
{ cout << feet << “\’-” << inches << ‘\”’; }

};
////////////////////////////////////////////////////////////////
int main()

{
Distance& dist = *(new Distance);  // create Distance object

// alias is “dist”
dist.getdist();                    // access object members
dist.showdist();                   //    with dot operator
cout << endl;
return 0;
}

The expression

new Distance

returns a pointer to a memory area large enough for a Distance object, so we can refer to the
original object as

*(new Distance)

This is the object pointed to by the pointer. Using a reference, we define dist to be an object
of type Distance, and we set it equal to *(new Distance). Now we can refer to members of
dist using the dot membership operator, rather than ->.

This approach is less common than using pointers to objects obtained with new, or simply
declaring an object, but it works in a similar way.
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An Array of Pointers to Objects
A common programming construction is an array of pointers to objects. This arrangement
allows easy access to a group of objects, and is more flexible than placing the objects them-
selves in an array. (For instance, in the PERSORT example in this chapter we’ll see how a group
of objects can be sorted by sorting an array of pointers to them, rather than sorting the objects
themselves.)

Our next example, PTROBJS, creates an array of pointers to the person class. Here’s the listing:

// ptrobjs.cpp
// array of pointers to objects
#include <iostream>
using namespace std;
////////////////////////////////////////////////////////////////
class person                      //class of persons

{
protected:

char name[40];              //person’s name
public:

void setName()              //set the name
{
cout << “Enter name: “;
cin >> name;
}

void printName()            //get the name
{
cout << “\n   Name is: “ << name;
}

};
////////////////////////////////////////////////////////////////
int main()

{
person* persPtr[100];     //array of pointers to persons
int n = 0;                //number of persons in array
char choice;

do                                  //put persons in array
{
persPtr[n] = new person;         //make new object
persPtr[n]->setName();           //set person’s name
n++;                             //count new person
cout << “Enter another (y/n)? “; //enter another
cin >> choice;                   //person?
}

while( choice==’y’ );               //quit on ‘n’
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for(int j=0; j<n; j++)              //print names of
{                                //all persons
cout << “\nPerson number “ << j+1;
persPtr[j]->printName();
}

cout << endl;
return 0;
}  //end main()

The class person has a single data item, name, which holds a string representing a person’s
name. Two member functions, setName() and printName(), allow the name to be set and dis-
played.

Program Operation
The main() function defines an array, persPtr, of 100 pointers to type person. In a do loop it
then asks the user to enter a name. With this name it creates a person object using new, and
stores a pointer to this object in the array persPtr. To demonstrate how easy it is to access the
objects using the pointers, it then prints out the name data for each person object.

Here’s a sample interaction with the program:

Enter name: Stroustrup    ← user enters names
Enter another (y/n)? y
Enter name: Ritchie
Enter another (y/n)? y
Enter name: Kernighan
Enter another (y/n)? n
Person number 1    ← program displays all names stored

Name is: Stroustrup
Person number 2

Name is: Ritchie
Person number 3

Name is: Kernighan

Accessing Member Functions
We need to access the member functions setName() and printName() in the person objects
pointed to by the pointers in the array persPtr. Each of the elements of the array persPtr is
specified in array notation to be persPtr[j] (or equivalently by pointer notation to be
*(persPtr+j)). The elements are pointers to objects of type person. To access a member of an
object using a pointer, we use the -> operator. Putting this all together, we have the following
syntax for getname():

persPtr[j]->getName()

This executes the getname() function in the person object pointed to by element j of the
persPtr array. (It’s a good thing we don’t have to program using English syntax.)
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A Linked List Example
Our next example shows a simple linked list. What is a linked list? It’s another way to store
data. You’ve seen numerous examples of data stored in arrays. Another data structure is an
array of pointers to data members, as in the PTRTOSTRS and PTROBJS examples. Both the array
and the array of pointers suffer from the necessity to declare a fixed-size array before running
the program.

A Chain of Pointers
The linked list provides a more flexible storage system in that it doesn’t use arrays at all.
Instead, space for each data item is obtained as needed with new, and each item is connected,
or linked, to the next data item using a pointer. The individual items don’t need to be located
contiguously in memory the way array elements are; they can be scattered anywhere.

In our example the entire linked list is an object of class linklist. The individual data items,
or links, are represented by structures of type link. Each such structure contains an integer—
representing the object’s single data item—and a pointer to the next link. The list itself stores a
pointer to the link at the head of the list. This arrangement is shown in Figure 10.15.
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Here’s the listing for LINKLIST:

// linklist.cpp
// linked list
#include <iostream>
using namespace std;
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////////////////////////////////////////////////////////////////
struct link                           //one element of list

{
int data;                          //data item
link* next;                        //pointer to next link
};

////////////////////////////////////////////////////////////////
class linklist                        //a list of links

{
private:

link* first;                    //pointer to first link
public:

linklist()                      //no-argument constructor
{ first = NULL; }            //no first link

void additem(int d);            //add data item (one link)
void display();                 //display all links

};
//--------------------------------------------------------------
void linklist::additem(int d)         //add data item

{
link* newlink = new link;          //make a new link
newlink->data = d;                 //give it data
newlink->next = first;             //it points to next link
first = newlink;                   //now first points to this
}

//--------------------------------------------------------------
void linklist::display()              //display all links

{
link* current = first;             //set ptr to first link
while( current != NULL )           //quit on last link

{
cout << current->data << endl;  //print data
current = current->next;        //move to next link
}

}
////////////////////////////////////////////////////////////////
int main()

{
linklist li;       //make linked list

li.additem(25);    //add four items to list
li.additem(36);
li.additem(49);
li.additem(64);
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li.display();      //display entire list
return 0;
}

The linklist class has only one member data item: the pointer to the start of the list. When
the list is first created, the constructor initializes this pointer, which is called first, to NULL.
The NULL constant is defined to be 0. This value serves as a signal that a pointer does not hold
a valid address. In our program a link whose next member has a value of NULL is assumed to
be at the end of the list.

Adding an Item to the List
The additem() member function adds an item to the linked list. A new link is inserted at the
beginning of the list. (We could write the additem() function to insert items at the end of the
list, but that is a little more complex to program.) Let’s look at the steps involved in inserting a
new link.

First, a new structure of type link is created by the line

link* newlink = new link;

This creates memory for the new link structure with new and saves the pointer to it in the
newlink variable.

Next we want to set the members of the newly created structure to appropriate values. A struc-
ture is similar to a class in that, when it is referred to by pointer rather than by name, its mem-
bers are accessed using the -> member-access operator. The following two lines set the data
variable to the value passed as an argument to additem(), and the next pointer to point to
whatever address was in first, which holds the pointer to the start of the list.

newlink->data = d;
newlink->next = first;

Finally, we want the first variable to point to the new link:

first = newlink;

The effect is to uncouple the connection between first and the old first link, insert the new
link, and move the old first link into the second position. Figure 10.16 shows this process.
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FIGURE 10.16
Adding to a linked list.

Displaying the List Contents
Once the list is created it’s easy to step through all the members, displaying them (or perform-
ing other operations). All we need to do is follow from one next pointer to another until we
find a next that is NULL, signaling the end of the list. In the function display(), the line

cout << endl << current->data;

prints the value of the data, and

current = current->next;

moves us along from one link to another, until

current != NULL

in the while expression becomes false. Here’s the output of LINKLIST:

64
49
36
25
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Linked lists are perhaps the most commonly used data storage arrangements after arrays. As
we noted, they avoid the wasting of memory space engendered by arrays. The disadvantage is
that finding a particular item on a linked list requires following the chain of links from the
head of the list until the desired link is reached. This can be time-consuming. An array ele-
ment, on the other hand, can be accessed quickly, provided its index is known in advance.
We’ll have more to say about linked lists and other data-storage techniques in Chapter 15,
“The Standard Template Library.”

Self-Containing Classes
We should note a possible pitfall in the use of self-referential classes and structures. The link
structure in LINKLIST contained a pointer to the same kind of structure. You can do the same
with classes:

class sampleclass
{
sampleclass* ptr;  // this is fine
};

However, while a class can contain a pointer to an object of its own type, it cannot contain an
object of its own type:

class sampleclass
{
sampleclass obj;  // can’t do this
};

This is true of structures as well as classes.

Augmenting LINKLIST

The general organization of LINKLIST can serve for a more complex situation than that shown.
There could be more data in each link. Instead of an integer, a link could hold a number of
data items or it could hold a pointer to a structure or object.

Additional member functions could perform such activities as adding and removing links from
an arbitrary part of the chain. Another important member function is a destructor. As we men-
tioned, it’s important to delete blocks of memory that are no longer in use. A destructor that
performs this task would be a highly desirable addition to the linklist class. It could go
through the list using delete to free the memory occupied by each link.
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Pointers to Pointers
Our next example demonstrates an array of pointers to objects, and shows how to sort these
pointers based on data in the object. This involves the idea of pointers to pointers, and may
help demonstrate why people lose sleep over pointers.

The idea in the next program is to create an array of pointers to objects of the person class.
This is similar to the PTROBJS example, but we go further and add variations of the order() and
bsort() functions from the PTRSORT example so that we can sort a group of person objects
based on the alphabetical order of their names. Here’s the listing for PERSORT:

// persort.cpp
// sorts person objects using array of pointers
#include <iostream>
#include <string>                 //for string class
using namespace std;
////////////////////////////////////////////////////////////////
class person                      //class of persons

{
protected:

string name;                //person’s name
public:

void setName()              //set the name
{ cout << “Enter name: “; cin >> name; }

void printName()            //display the name
{ cout << endl << name; }

string getName()            //return the name
{ return name; }

};
////////////////////////////////////////////////////////////////
int main()

{
void bsort(person**, int);     //prototype
person* persPtr[100];          //array of pointers to persons
int n = 0;                     //number of persons in array
char choice;                   //input char

do {                           //put persons in array
persPtr[n] = new person;    //make new object
persPtr[n]->setName();      //set person’s name
n++;                        //count new person
cout << “Enter another (y/n)? “; //enter another
cin >> choice;              //   person?
}
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while( choice==’y’ );          //quit on ‘n’

cout << “\nUnsorted list:”;
for(int j=0; j<n; j++)         //print unsorted list

{ persPtr[j]->printName(); }

bsort(persPtr, n);             //sort pointers

cout << “\nSorted list:”;
for(j=0; j<n; j++)             //print sorted list

{ persPtr[j]->printName(); }
cout << endl;
return 0;
}  //end main()

//--------------------------------------------------------------
void bsort(person** pp, int n)    //sort pointers to persons

{
void order(person**, person**);  //prototype
int j, k;                      //indexes to array

for(j=0; j<n-1; j++)           //outer loop
for(k=j+1; k<n; k++)        //inner loop starts at outer

order(pp+j, pp+k);       //order the pointer contents
}

//--------------------------------------------------------------
void order(person** pp1, person** pp2)  //orders two pointers

{                              //if 1st larger than 2nd,
if( (*pp1)->getName() > (*pp2)->getName() )

{
person* tempptr = *pp1;     //swap the pointers
*pp1 = *pp2;
*pp2 = tempptr;
}

}

When the program is first executed it asks for a name. When the user gives it one, it creates an
object of type person and sets the name data in this object to the name entered by the user. The
program also stores a pointer to the object in the persPtr array.

When the user types n to indicate that no more names will be entered, the program calls the
bsort() function to sort the person objects based on their name member variables. Here’s
some sample interaction with the program:

Enter name: Washington
Enter another (y/n)? y
Enter name: Adams
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Enter another (y/n)? y
Enter name: Jefferson
Enter another (y/n)? y
Enter name: Madison
Enter another (y/n)? n
Unsorted list:
Washington
Adams
Jefferson
Madison

Sorted list:
Adams
Jefferson
Madison
Washington

Sorting Pointers
Actually, when we sort person objects, we don’t move the objects themselves; we move the
pointers to the objects. This eliminates the need to shuffle the objects around in memory,
which can be very time-consuming if the objects are large. It could also, if we wanted, allow 
us to keep multiple sorts—one by name and another by phone number, for example—in
memory at the same time without storing the objects multiple times. The process is shown in
Figure 10.17.

To facilitate the sorting activity, we’ve added a getName() member function to the person
class so we can access the names from order() to decide when to swap pointers.

The person** Data Type
You will notice that the first argument to the bsort() function, and both arguments to
order(), have the type person**. What do the two asterisks mean? These arguments are used
to pass the address of the array persPtr, or—in the case of order()—the addresses of ele-
ments of the array. If this were an array of type person, the address of the array would be type
person*. However, the array is of type pointers to person, or person*, so its address is type
person**. The address of a pointer is a pointer to a pointer. Figure 10.18 shows how this
looks.
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FIGURE 10.17
Sorting an array of pointers.
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FIGURE 10.18
Pointer to an array of pointers.

Compare this program with PTRSORT, which sorted an array of type int. You’ll find that the
data types passed to functions in PERSORT all have one more asterisk than they did in PTRSORT,
because the array is an array of pointers.

Since the persPtr array contains pointers, the construction

persPtr[j]->printName()

executes the printName() function in the object pointed to by element j of persPtr.

Comparing Strings
The order() function in PERSORT has been modified to order two strings lexigraphically—that
is, by putting them in alphabetical order. To do this it compares the strings using the C++
library function strcmp(). This function takes the two strings s1 and s2 as arguments, as in
strcmp(s1, s2), and returns one of the following values.

Value Condition

<0 s1 comes before s2

0 s1 is the same as s2

>0 s1 comes after s2

The strings are accessed using the syntax

(*pp1)->getname()
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The argument pp1 is a pointer to a pointer, and we want the name pointed to by the pointer it
points to. The member-access operator -> dereferences one level, but we need to dereference
another level, hence the asterisk preceding pp1.

Just as there can be pointers to pointers, there can be pointers to pointers to pointers, and so
on. Fortunately such complexities are seldom encountered.

A Parsing Example
Programmers are frequently faced with the problem of unravelling or parsing a string of sym-
bols. Examples are commands typed by a user at the keyboard, sentences in natural languages
(such as English), statements in a programming language, and algebraic expressions. Now that
we’ve learned about pointers and strings, we can handle this sort of problem.

Our next (somewhat longer) example will show how to parse arithmetic expressions like

6/3+2*3-1

The user enters the expression, the program works its way through it, character by character,
figures out what it means in arithmetic terms, and displays the resulting value (7 in the exam-
ple). Our expressions will use the four arithmetic operators: +, -, *, and /. We’ll simplify the
numbers we use to make the programming easier by restricting them to a single digit. Also, we
won’t allow parentheses.

This program makes use of our old friend the Stack class (see the STAKARAY program in
Chapter 7). We’ve modified this class so that it stores data of type char. We use the stack to
store both numbers and operators (both as characters). The stack is a useful storage mechanism
because, when parsing expressions, we frequently need to access the last item stored, and a
stack is a last-in-first-out (LIFO) container.

Besides the Stack class, we’ll use a class called express (short for expression), representing
an entire arithmetic expression. Member functions for this class allow us to initialize an object
with an expression in the form of a string (entered by the user), parse the expression, and
return the resulting arithmetic value.

Parsing Arithmetic Expressions
Here’s how we parse an arithmetic expression. We start at the left, and look at each character
in turn. It can be either a number (always a single digit—a character between 0 and 9), or an
operator (the characters +, -, *, and /).

If the character is a number, we always push it onto the stack. We also push the first operator
we encounter. The trick is how we handle subsequent operators. Note that we can’t execute the
current operator, because we haven’t yet read the number that follows it. Finding an operator is
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merely the signal that we can execute the previous operator, which is stored on the stack. That
is, if the sequence 2+3 is on the stack, we wait until we find another operator before carrying
out the addition.

Thus whenever we find that the current character is an operator (except the first), we pop the
previous number (3 in the preceding example) and the previous operator (+) off the stack, plac-
ing them in the variables lastval and lastop. Finally we pop the first number (2) and carry
out the arithmetic operation on the two numbers (obtaining 5). Can we always execute the pre-
vious operator? No. Remember that * and / have a higher precedence than + and -. In the
expression 3+4/2, we can’t execute the + until we’ve done the division. So when we get to the
/ in this expression, we must put the 2 and the + back on the stack until we’ve carried out the
division.

On the other hand, if the current operator is a + or -, we know we can always execute the pre-
vious operator. That is, when we see the + in the expression 4-5+6, we know it’s all right to
execute the -, and when we see the - in 6/2-3 , we know it’s okay to do the division. Table
10.1 shows the four possibilities.

TABLE 10.1 Operators and Parsing Actions

Previous Current
Operator Operator Example Action

+ or - * or / 3+4/ Push previous operator and previous 
number (+, 4)

* or / * or / 9/3* Execute previous operator, push result (3)

+ or - + or - 6+3+ Execute previous operator, push result (9)

* or / + or - 8/2- Execute previous operator, push result (4)

The parse() member function carries out this process of going through the input expression
and performing those operations it can. However, there is more work to do. The stack still con-
tains either a single number or several sequences of number-operator-number. Working down
through the stack, we can execute these sequences. Finally, a single number is left on the stack;
this is the value of the original expression. The solve() member function carries out this task,
working its way down through the stack until only a single number is left. In general, parse()
puts things on the stack, and solve() takes them off.
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The PARSE Program
Some typical interaction with PARSE might look like this:

Enter an arithmetic expression
of the form 2+3*4/3-2.
No number may have more than one digit.
Don’t use any spaces or parentheses.
Expression: 9+6/3

The numerical value is: 11
Do another (Enter y or n)?

Note that it’s all right if the results of arithmetic operations contain more than one digit. They
are limited only by the numerical size of type char, from –128 to +127. Only the input string
is limited to numbers from 0 to 9.

Here’s the listing for the program:

// parse.cpp
// evaluates arithmetic expressions composed of 1-digit numbers
#include <iostream>
#include <cstring>                   //for strlen(), etc
using namespace std;
const int LEN = 80;    //length of expressions, in characters
const int MAX = 40;    //size of stack
////////////////////////////////////////////////////////////////
class Stack

{
private:

char st[MAX];                  //stack: array of chars
int top;                       //number of top of stack

public:
Stack()                        //constructor

{ top = 0; }
void push(char var)            //put char on stack

{ st[++top] = var; }
char pop()                     //take char off stack

{ return st[top--]; }
int gettop()                   //get top of stack

{ return top; }
};

////////////////////////////////////////////////////////////////
class express                        //expression class

{
private:

Stack s;                       //stack for analysis
char* pStr;                    //pointer to input string
int len;                       //length of input string
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public:
express(char* ptr)             //constructor

{
pStr = ptr;                 //set pointer to string
len = strlen(pStr);         //set length
}

void parse();                  //parse the input string
int solve();                   //evaluate the stack

};
//--------------------------------------------------------------
void express::parse()                //add items to stack

{
char ch;                          //char from input string
char lastval;                     //last value
char lastop;                      //last operator

for(int j=0; j<len; j++)          //for each input character
{
ch = pStr[j];                  //get next character

if(ch>=’0’ && ch<=’9’)         //if it’s a digit,
s.push(ch-’0’);             //save numerical value

//if it’s operator
else if(ch==’+’ || ch==’-’ || ch==’*’ || ch==’/’)

{
if(s.gettop()==1)           //if it’s first operator

s.push(ch);              //put on stack
else                        //not first operator

{
lastval = s.pop();       //get previous digit
lastop = s.pop();        //get previous operator
//if this is * or / AND last operator was + or -
if( (ch==’*’ || ch==’/’) &&

(lastop==’+’ || lastop==’-’) )
{
s.push(lastop);       //restore last two pops
s.push(lastval);
}

else                     //in all other cases
{
switch(lastop)        //do last operation

{                  //push result on stack
case ‘+’: s.push(s.pop() + lastval); break;
case ‘-’: s.push(s.pop() - lastval); break;
case ‘*’: s.push(s.pop() * lastval); break;
case ‘/’: s.push(s.pop() / lastval); break;
default:  cout << “\nUnknown oper”; exit(1);
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}  //end switch
}  //end else, in all other cases

s.push(ch);              //put current op on stack
}  //end else, not first operator

}  //end else if, it’s an operator
else                           //not a known character

{ cout << “\nUnknown input character”; exit(1); }
}  //end for

}  //end parse()
//--------------------------------------------------------------
int express::solve()                 //remove items from stack

{
char lastval;                     //previous value

while(s.gettop() > 1)
{
lastval = s.pop();             //get previous value
switch( s.pop() )              //get previous operator

{                           //do operation, push answer
case ‘+’: s.push(s.pop() + lastval); break;
case ‘-’: s.push(s.pop() - lastval); break;
case ‘*’: s.push(s.pop() * lastval); break;
case ‘/’: s.push(s.pop() / lastval); break;
default:  cout << “\nUnknown operator”; exit(1);
}  //end switch

}  //end while
return int( s.pop() );            //last item on stack is ans
}  //end solve()

////////////////////////////////////////////////////////////////
int main()

{
char ans;                         //’y’ or ‘n’
char string[LEN];                 //input string from user

cout << “\nEnter an arithmetic expression”
“\nof the form 2+3*4/3-2.”
“\nNo number may have more than one digit.”
“\nDon’t use any spaces or parentheses.”;

do {
cout << “\nEnter expresssion: “;
cin >> string;                        //input from user
express* eptr = new express(string);  //make expression
eptr->parse();                        //parse it
cout << “\nThe numerical value is: “

<< eptr->solve();                //solve it
delete eptr;                          //delete expression
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cout << “\nDo another (Enter y or n)? “;
cin >> ans;
} while(ans == ‘y’);

return 0;
}

This is a longish program, but it shows how a previously designed class, Stack, can come in
handy in a new situation; it demonstrates the use of pointers in a variety of ways; and it shows
how useful it can be to treat a string as an array of characters.

Simulation: A Horse Race
As our final example in this chapter we’ll show a horse-racing game. In this game a number of
horses appear on the screen, and, starting from the left, race to a finish line on the right. This
program will demonstrate pointers in a new situation, and also a little bit about object-oriented
design.

Each horse’s speed is determined randomly, so there is no way to figure out in advance which
one will win. The program uses console graphics, so the horses are easily, although somewhat
crudely, displayed. You’ll need to compile the program with the MSOFTCON.H or BORLACON.H
header file (depending on your compiler), and the MSOFTCON.CPP or BORLACON.CPP source file.
(See Appendix E, “Console Graphics Lite,” for more information.)

When our program, HORSE, is started, it asks the user to supply the race’s distance and the
number of horses that will run in it. The classic unit of distance for horse racing (at least in
English-speaking countries) is the furlong, which is 1/8 of a mile. Typical races are 6, 8, 10, or
12 furlongs. You can enter from 1 to 7 horses. The program draws vertical lines corresponding
to each furlong, along with start and finish lines. Each horse is represented by a rectangle with
a number in the middle. Figure 10.19 shows the screen with a race in progress.
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Designing the Horse Race
How do we approach an OOP design for our horse race? Our first question might be, is there a
group of similar entities that we’re trying to model? The answer is yes, the horses. So it seems
reasonable to make each horse an object. There will be a class called horse, which will contain
data specific to each horse, such as its number and the distance it has run so far (which is used
to display the horse in the correct screen position).

However, there is also data that applies to the entire race track, rather than to individual horses.
This includes the track length, the elapsed time in minutes and seconds (0:00 at the start of the
race), and the total number of horses. It makes sense then to have a track object, which will
be a single member of the track class. You can think of other real-world objects associated
with horse racing, such as riders and saddles, but they aren’t relevant to this program.

Are there other ways to design the program? For example, what about using inheritance to
make the horses descendants of the track? This doesn’t make much sense, because the horses
aren’t a “kind of” race track; they’re a completely different thing. Another option is to make
the track data into static data of the horse class. However, it’s generally better to make each
different kind of thing in the problem domain (the real world) a separate class in the program.
One advantage of this is that it’s easier to use the classes in other contexts, such as using the
track to race cars instead of horses.

How will the horse objects and the track object communicate? (Or in UML terms, what will
their association consist of?) An array of pointers to horse objects can be a member of the
track class, so the track can access the horses through these pointers. The track will create the
horses when it’s created. As it does so, it will pass a pointer to itself to each horse, so the horse
can access the track.

Here’s the listing for HORSE:

// horse.cpp
// models a horse race
#include “msoftcon.h”               //for console graphics
#include <iostream>                 //for I/O
#include <cstdlib>                  //for random()
#include <ctime>                    //for time()
using namespace std;
const int CPF = 5;                  //columns per furlong
const int maxHorses = 7;            //maximum number of horses
class track;                        //for forward references
////////////////////////////////////////////////////////////////
class horse

{
private:

const track* ptrTrack;        //pointer to track
const int horse_number;       //this horse’s number
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float finish_time;            //this horse’s finish time
float distance_run;           //distance run so far

public:                          //create the horse
horse(const int n, const track* ptrT) : 

horse_number(n), ptrTrack(ptrT), 
distance_run(0.0)    //haven’t moved yet

{  }   
~horse()                      //destroy the horse

{ /*empty*/ }              //display the horse
void display_horse(const float elapsed_time);

};  //end class horse
////////////////////////////////////////////////////////////////
class track

{
private:

horse* hArray[maxHorses];     //array of ptrs-to-horses
int total_horses;             //total number of horses
int horse_count;              //horses created so far
const float track_length;     //track length in furlongs
float elapsed_time;           //time since start of race

public:
track(float lenT, int nH);    //2-arg constructor
~track();                     //destructor
void display_track();         //display track
void run();                   //run the race
float get_track_len() const;  //return total track length

};  //end class track
//---------------------------------------------------------------
void horse::display_horse(float elapsed_time) //for each horse

{                                //display horse & number
set_cursor_pos( 1 + int(distance_run * CPF),

2 + horse_number*2 );
//horse 0 is blue

set_color(static_cast<color>(cBLUE+horse_number));
//draw horse

char horse_char = ‘0’ + static_cast<char>(horse_number);
putch(‘ ‘); putch(‘\xDB’); putch(horse_char); putch(‘\xDB’);

//until finish,
if( distance_run < ptrTrack->get_track_len() + 1.0 / CPF )

{
if( rand() % 3 )              //skip about 1 of 3 ticks

distance_run += 0.2F;      //advance 0.2 furlongs
finish_time = elapsed_time;   //update finish time
}
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else
{                             //display finish time
int mins = int(finish_time)/60;
int secs = int(finish_time) - mins*60;
cout << “ Time=” << mins << “:” << secs;
}

}  //end display_horse()
//---------------------------------------------------------------
track::track(float lenT, int nH) :  //track constructor

track_length(lenT), total_horses(nH),
horse_count(0), elapsed_time(0.0)

{
init_graphics();           //start graphics                             
total_horses =             //not more than 7 horses
(total_horses > maxHorses) ? maxHorses : total_horses; 
for(int j=0; j<total_horses; j++)   //make each horse

hArray[j] = new horse(horse_count++, this);

time_t aTime;              //initialize random numbers
srand( static_cast<unsigned>(time(&aTime)) );
display_track();
}  //end track constructor

//---------------------------------------------------------------
track::~track()                     //track destructor

{
for(int j=0; j<total_horses; j++) //delete each horse

delete hArray[j];
}

//---------------------------------------------------------------
void track::display_track()

{
clear_screen();                  //clear screen

//display track
for(int f=0; f<=track_length; f++)    //for each furlong

for(int r=1; r<=total_horses*2 + 1; r++) //and screen row
{
set_cursor_pos(f*CPF + 5, r);
if(f==0 || f==track_length)

cout << ‘\xDE’;         //draw start or finish line
else

cout << ‘\xB3’;         //draw furlong marker
}

}  //end display_track()
//---------------------------------------------------------------
void track::run()
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{
while( !kbhit() )

{
elapsed_time += 1.75;         //update time

//update each horse
for(int j=0; j<total_horses; j++)  

hArray[j]->display_horse(elapsed_time);
wait(500);
}

getch();                         //eat the keystroke
cout << endl;                         
}

//---------------------------------------------------------------
float track::get_track_len() const

{ return track_length; }
/////////////////////////////////////////////////////////////////
int main()

{
float length;
int total;

//get data from user
cout << “\nEnter track length (furlongs; 1 to 12): “;
cin >> length;
cout << “\nEnter number of horses (1 to 7): “;
cin >> total;                             
track theTrack(length, total);   //create the track
theTrack.run();                  //run the race
return 0;
}  //end main()

Keeping Time
Simulation programs usually involve an activity taking place over a period of time. To model
the passage of time, such programs typically energize themselves at fixed intervals. In the
HORSE program, the main() program calls the track’s run() function. This function makes a
series of calls within a while loop, one for each horse, to a function display_horse(). This
function redraws each horse in its new position. The while loop then pauses 500 milliseconds,
using the console graphics wait() function. Then it does the same thing again, until the race is
over or the user presses a key.

Deleting an Array of Pointers to Objects
At the end of the program the destructor for the track must delete the horse objects, which it
obtained with new in its constructor. Notice that we can’t just say

delete[] hArray;  //deletes pointers, but not horses
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This deletes the array of pointers, but not what the pointers point to. Instead we must go
through the array element by element, and delete each horse individually:

for(int j=0; j<total_horses; j++)  //deletes horses
delete hArray[j]; 

The putch() Function
We want each horse to be a different color, but not all compilers allow cout to generate colors.
This is true of the current version of Borland C++Builder. However, some old C functions will
generate colors. For this reason we use putch() when displaying the horses, in the line

putch(‘ ‘); putch(‘\xDB’); putch(horse_char); putch(‘\xDB’);

This function requires the CONIO.H include file (furnished with the compiler). We don’t need 
to include this file explicitly in HORSE.CPP because it is already included in MSOFTCON.H or
BORLACON.H.

Multiplicity in the UML
Let’s look at a UML class diagram of the HORSE program, shown in Figure 10.20. This diagram
will introduce a UML concept called multiplicity.
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FIGURE 10.20
UML class diagram of the HORSE program. 

Sometimes exactly one object of class A relates to exactly one object of class B. In other situa-
tions, many objects of a class, or a specific number, may be involved in an association. The
number of objects involved in an association is called the multiplicity of the association. In
class diagrams, numbers or symbols are used at both ends of the association line to indicate
multiplicity. Table 10.2 shows the UML multiplicity symbols.

TABLE 10.2 The UML Multiplicity Symbols

Symbol Meaning

1 One

* Some (0 to infinity)

0..1 None or one
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1..* One or more

2..4 Two, three, or four

7,11 Seven or eleven

If an association line had a 1 at the Class A end and a * at the class B end, that would mean
that one object of class A interacted with an unspecified number of class B objects.

In the HORSE program there is one track but there can be up to 7 horses. This is indicated by the
1 at the track end of the association line and the 1..7 at the horse end. We assume that one
horse is enough for a race, as might happen in time trials.

UML State Diagrams
In this section we’ll introduce a new kind of UML diagram: the state diagram (also called the
statechart diagram).

The UML class diagrams we examined in earlier chapters show relationships between classes.
Class diagrams reflect the organization of the program’s code. They are static diagrams, in that
these relationships (such as association and generalization) do not change as the program runs.

However, it’s sometimes useful to examine the dynamic behavior of particular class objects
over time. An object is created, it is affected by events or messages from other parts of the pro-
gram, it perhaps makes decisions, it does various things, and it is eventually deleted. That is, its
situation changes over time. State diagrams show this graphically.

Everyone is familiar with the concept of state when applied to devices in our everyday lives. A
radio has an On state and an Off state. A washing machine might have Washing, Rinsing,
Spinning, and Stopped states. A television set has a state for each channel it is currently
receiving (the Channel 7 Active state, and so on).

Between the states are transitions. As a result of a timer having reached (say) the 20-minute
point, the washing machine makes a transition from the Rinse state to the Spin state. As a
result of a message from the remote-control unit, the TV makes a transition from the Channel
7 Active state to the Channel 2 Active state.

Figure 10.21 shows a state diagram based on the HORSE program seen earlier in this chapter. It
shows the different states a horse object can find itself in as the program runs.
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FIGURE 10.21
State diagram of a horse object.

States
In UML state diagrams, a state is represented by a rectangle with rounded corners. The state is
named at the top of the rectangle. State names usually begin with a capital letter. Below the
name are any activities the object performs when it enters the state. 

State diagrams can include two special states: a black disk represents the initial state, and a
black disk surrounded by a circle represents the final state. These are shown in the figure.

After it is created, a horse object can be in only two major states: before it reaches the finish
line it’s in the Running state, and afterwards it’s in the Finished state.

Unlike classes in a class diagram, there’s nothing in a program’s code that corresponds exactly
to states in a state diagram. To know what states to include, you must have an idea what cir-
cumstances an object will find itself in, and what it will do as a result. You then make up
appropriate names for the states.

Transitions
Transitions between states are represented by directed arrows from one rectangle to another. 
If the transition is triggered by an event, it can be labeled with the event name, as are the 
created and deleted transitions in the figure. Transition names are not capitalized. The names
can be closer to English than to C++ usage.
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The event that triggers the other two transitions is the timing out of a 500 millisecond timer.
The keyword after is used to name these transitions, with the time as a parameter.

Transitions can also be labeled with what the UML calls a guard: a condition that must be sat-
isfied if the transition is to occur. Guards are written in brackets. The two after() transitions
have guards as well as event names. Because the events are the same, the guards determine
which transition will occur.

Note that one of these transitions is a self transition: it returns to the same state where it began.

Racing from State to State
Each time it enters the Running state, the horse object carries out an activity that consists of
increasing the distance it has run by 0.2 furlongs. As long as it has not yet reached the finish
line, the [distance < track length] guard is true and the Running state transitions back to
itself. When the horse reaches the finish line, [distance >= track length] becomes true,
and the horse transitions to the Finished state, where it displays its total time for the race. It
then waits to be deleted.

We’ve shown enough to give you an idea what state diagrams do. There is of course much
more to learn about them. We’ll see an example of a more complex state diagram that
describes an elevator object in Chapter 13, “Multifile Programs.”

Debugging Pointers
Pointers can be the source of mysterious and catastrophic program bugs. The most common
problem is that the programmer has failed to place a valid address in a pointer variable. When
this happens the pointer can end up pointing anywhere in memory. It could be pointing to the
program code, or to the operating system. If the programmer then inserts a value into memory
using the pointer, the value will write over the program or operating instructions, and the com-
puter will crash or evince other uncharming behavior.

A particular version of this scenario takes place when the pointer points to address 0, which is
called NULL. This happens, for example, if the pointer variable is defined as a global variable,
since global variables are automatically initialized to 0. Here’s a miniprogram that demon-
strates the situation:

int* intptr;          //global variable, initialized to 0
void main()

{                  //failure to put valid address in intptr
*intptr = 37;      //attempts to put 37 in address at 0
}                  //result is error
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When intptr is defined, it is given the value 0, since it is global. The single program state-
ment will attempt to insert the value 37 into the address at 0.

Fortunately, however, the runtime error-checking unit built into the program by the compiler is
waiting for attempts to access address 0, and will display an error message (perhaps an access
violation, null pointer assignment, or page fault) and terminate the program. If you see such a
message, one possibility is that you have failed to properly initialize a pointer.

Summary
This has been a whirlwind tour through the land of pointers. There is far more to learn, but the
topics we’ve covered here will provide a basis for the examples in the balance of the book and
for further study of pointers.

We’ve learned that everything in the computer’s memory has an address, and that addresses are
pointer constants. We can find the addresses of variables using the address-of operator &.

Pointers are variables that hold address values. Pointers are defined using an asterisk (*) to
mean pointer to. A data type is always included in pointer definitions (except void*), since the
compiler must know what is being pointed to, so that it can perform arithmetic correctly on the
pointer. We access the thing pointed to using the asterisk in a different way, as the dereference
operator, meaning contents of the variable pointed to by.

The special type void* means a pointer to any type. It’s used in certain difficult situations
where the same pointer must hold addresses of different types.

Array elements can be accessed using array notation with brackets or pointer notation with an
asterisk. Like other addresses, the address of an array is a constant, but it can be assigned to a
variable, which can be incremented and changed in other ways.

When the address of a variable is passed to a function, the function can work with the original
variable. (This is not true when arguments are passed by value.) In this respect passing by
pointer offers the same benefits as passing by reference, although pointer arguments must be
dereferenced or accessed using the dereference operator. However, pointers offer more flexibil-
ity in some cases.

A string constant can be defined as an array or as a pointer. The pointer approach may be more
flexible, but there is a danger that the pointer value will be corrupted. Strings, being arrays of
type char, are commonly passed to functions and accessed using pointers.

The new operator obtains a specified amount of memory from the system and returns a pointer
to the memory. This operator is used to create variables and data structures during program
execution. The delete operator releases memory obtained with new.
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When a pointer points to an object, members of the object’s class can be accessed using the
access operator ->. The same syntax is used to access structure members.

Classes and structures may contain data members that are pointers to their own type. This per-
mits the creation of complex data structures such as linked lists.

There can be pointers to pointers. These variables are defined using the double asterisk; for
example, int** pptr.

Multiplicity in UML class diagrams shows the number of objects involved in an association.

UML state diagrams show how a particular object’s situation changes over time. States are rep-
resented by rectangles with rounded corners, and transitions between states are represented by
directed lines.

Questions
Answers to these questions can be found in Appendix G.

1. Write a statement that displays the address of the variable testvar.

2. The contents of two pointers that point to adjacent variables of type float differ by
_____________.

3. A pointer is

a. the address of a variable.

b. an indication of the variable to be accessed next.

c. a variable for storing addresses.

d. the data type of an address variable.

4. Write expressions for the following:

a. The address of var

b. The contents of the variable pointed to by var

c. The variable var used as a reference argument

d. The data type pointer-to-char

5. An address is a _____________, while a pointer is a ____________.

6. Write a definition for a variable of type pointer-to-float.

7. Pointers are useful for referring to a memory address that has no _______________.

8. If a pointer testptr points to a variable testvar, write a statement that represents the
contents of testvar but does not use its name.
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9. An asterisk placed after a data type means _________. An asterisk placed in front of a
variable name means __________.

10. The expression *test can be said to

a. be a pointer to test.

b. refer to the contents of test.

c. dereference test.

d. refer to the value of the variable pointed to by test.

11. Is the following code correct?

int intvar = 333;
int* intptr;
cout << *intptr;

12. A pointer to void can hold pointers to _________.

13. What is the difference between intarr[3] and *(intarr+3)?

14. Write some code that uses pointer notation to display every value in the array intarr,
which has 77 elements.

15. If intarr is an array of integers, why is the expression intarr++ not legal?

16. Of the three ways to pass arguments to functions, only passing by __________ and pass-
ing by __________ allow the function to modify the argument in the calling program.

17. The type of variable a pointer points to must be part of the pointer’s definition so that

a. data types don’t get mixed up when arithmetic is performed on them.

b. pointers can be added to one another to access structure members.

c. no one’s religious conviction will be attacked.

d. the compiler can perform arithmetic correctly to access array elements.

18. Using pointer notation, write a prototype (declaration) for a function called func() that
returns type void and takes a single argument that is an array of type char.

19. Using pointer notation, write some code that will transfer 80 characters from the string
s1 to the string s2.

20. The first element in a string is

a. the name of the string.

b. the first character in the string.

c. the length of the string.

d. the name of the array holding the string.

21. Using pointer notation, write the prototype for a function called revstr() that returns a
string value and takes one argument that represents a string.
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22. Write a definition for an array numptrs of pointers to the strings One, Two, and Three.

23. The new operator

a. returns a pointer to a variable.

b. creates a variable called new.

c. obtains memory for a new variable.

d. tells how much memory is available.

24. Using new may result in less __________ memory than using an array.

25. The delete operator returns ____________ to the operating system.

26. Given a pointer p that points to an object of type upperclass, write an expression that
executes the exclu() member function in this object.

27. Given an object with index number 7 in array objarr, write an expression that executes
the exclu() member function in this object.

28. In a linked list

a. each link contains a pointer to the next link.

b. an array of pointers points to the links.

c. each link contains data or a pointer to data.

d. the links are stored in an array.

29. Write a definition for an array arr of 8 pointers that point to variables of type float.

30. If you wanted to sort many large objects or structures, it would be most efficient to

a. place them in an array and sort the array.

b. place pointers to them in an array and sort the array.

c. place them in a linked list and sort the linked list.

d. place references to them in an array and sort the array.

31. Express the multiplicities of an association that has fewer than 10 objects at one end and
more than 2 objects at the other.

32. The states in a state diagram correspond to

a. messages between objects.

b. circumstances in which an object finds itself.

c. objects in the program.

d. changes in an object’s situation.
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33. True or false: a transition between states exists for the duration of the program.

34. A guard in a state diagram is

a. a constraint on when a transition can occur.

b. a name for certain kinds of transitions.

c. a name for certain kinds of states.

d. a restriction on the creation of certain states.

Exercises
Answers to starred exercises can be found in Appendix G.

*1. Write a program that reads a group of numbers from the user and places them in an array
of type float. Once the numbers are stored in the array, the program should average
them and print the result. Use pointer notation wherever possible.

*2. Start with the String class from the NEWSTR example in this chapter. Add a member
function called upit() that converts the string to all uppercase. You can use the 
toupper() library function, which takes a single character as an argument and returns a
character that has been converted (if necessary) to uppercase. This function uses the
CCTYPE header file. Write some code in main() to test upit().

*3. Start with an array of pointers to strings representing the days of the week, as found in
the PTRTOSTR program in this chapter. Provide functions to sort the strings into alphabeti-
cal order, using variations of the bsort() and order() functions from the PTRSORT pro-
gram in this chapter. Sort the pointers to the strings, not the actual strings.

*4. Add a destructor to the LINKLIST program. It should delete all the links when a linklist
object is destroyed. It can do this by following along the chain, deleting each link as it
goes. You can test the destructor by having it display a message each time it deletes a
link; it should delete the same number of links that were added to the list. (A destructor
is called automatically by the system for any existing objects when the program exits.)

5. Suppose you have a main() with three local arrays, all the same size and type (say
float). The first two are already initialized to values. Write a function called 
addarrays() that accepts the addresses of the three arrays as arguments; adds the con-
tents of the first two arrays together, element by element; and places the results in the
third array before returning. A fourth argument to this function can carry the size of the
arrays. Use pointer notation throughout; the only place you need brackets is in defining
the arrays.
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6. Make your own version of the library function strcmp(s1, s2), which compares two
strings and returns –1 if s1 comes first alphabetically, 0 if s1 and s2 are the same, and 1
if s2 comes first alphabetically. Call your function compstr(). It should take two char*
strings as arguments, compare them character by character, and return an int. Write a
main() program to test the function with different combinations of strings. Use pointer
notation throughout.

7. Modify the person class in the PERSORT program in this chapter so that it includes not
only a name, but also a salary item of type float representing the person’s salary.
You’ll need to change the setName() and printName() member functions to setData()
and printData(), and include in them the ability to set and display the salary as well as
the name. You’ll also need a getSalary() function. Using pointer notation, write a 
salsort() function that sorts the pointers in the persPtr array by salary rather than by
name. Try doing all the sorting in salsort(), rather than calling another function as 
PERSORT does. If you do this, don’t forget that -> takes precedence over *, so you’ll need
to say

if( (*(pp+j))->getSalary() > (*(pp+k))->getSalary() )
{ /* swap the pointers */ }

8. Revise the additem() member function from the LINKLIST program so that it adds the
item at the end of the list, rather than the beginning. This will cause the first item
inserted to be the first item displayed, so the output of the program will be

25
36
49
64

To add the item, you’ll need to follow the chain of pointers to the end of the list, then
change the last link to point to the new link.

9. Let’s say that you need to store 100 integers so that they’re easily accessible. However,
let’s further assume that there’s a problem: The memory in your computer is so frag-
mented that the largest array that you can use holds only 10 integers. (Such problems
actually arise, although usually with larger memory objects.) You can solve this problem
by defining 10 separate int arrays of 10 integers each, and an array of 10 pointers to
these arrays. The int arrays can have names like a0, a1, a2, and so on. The address of
each of these arrays can be stored in the pointer array of type int*, which can have a
name like ap (for array of pointers). You can then access individual integers using
expressions like ap[j][k], where j steps through the pointers in ap and k steps through
individual integers in each array. This looks as if you’re accessing a two-dimensional
array, but it’s really a group of one-dimensional arrays.

Fill such a group of arrays with test data (say the numbers 0, 10, 20, and so on up to
990). Then display the data to make sure it’s correct.
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10. As presented, Exercise 9 is rather inelegant because each of the 10 int arrays is declared
in a different program statement, using a different name. Each of their addresses must
also be obtained using a separate statement. You can simplify things by using new, which
allows you to allocate the arrays in a loop and assign pointers to them at the same time:

for(j=0; j<NUMARRAYS; j++)         // allocate NUMARRAYS arrays
*(ap+j) = new int[MAXSIZE];     // each MAXSIZE ints long

Rewrite the program in Exercise 9 to use this approach. You can access the elements of
the individual arrays using the same expression mentioned in Exercise 9, or you can use
pointer notation: *(*(ap+j)+k). The two notations are equivalent.

11. Create a class that allows you to treat the 10 separate arrays in Exercise 10 as a single
one-dimensional array, using array notation with a single index. That is, statements in
main() can access their elements using expressions like a[j], even though the class
member functions must access the data using the two-step approach. Overload the sub-
script operator [] (see Chapter 9, “Inheritance”) to achieve this result. Fill the arrays
with test data and then display it. Although array notation is used in the class interface in
main() to access “array” elements, you should use only pointer notation for all the oper-
ations in the implementation (within the class member functions).

12. Pointers are complicated, so let’s see whether we can make their operation more under-
standable (or possibly more impenetrable) by simulating their operation with a class.

To clarify the operation of our homemade pointers, we’ll model the computer’s memory
using arrays. This way, since array access is well understood, you can see what’s really
going on when we access memory with pointers.

We’d like to use a single array of type char to store all types of variables. This is what a
computer memory really is: an array of bytes (which are the same size as type char),
each of which has an address (or, in array-talk, an index). However, C++ won’t ordinar-
ily let us store a float or an int in an array of type char. (We could use unions, but
that’s another story.) So we’ll simulate memory by using a separate array for each data
type we want to store. In this exercise we’ll confine ourselves to one numerical type,
float, so we’ll need an array of this type; call it fmemory. However, pointer values
(addresses) are also stored in memory, so we’ll need another array to store them. Since
we’re using array indexes to model addresses, and indexes for all but the largest arrays
can be stored in type int, we’ll create an array of this type (call it pmemory) to hold these
“pointers.”

An index to fmemory (call it fmem_top) points to the next available place where a float
value can be stored. There’s a similar index to pmemory (call it pmem_top). Don’t worry
about running out of “memory.” We’ll assume these arrays are big enough so that each
time we store something we can simply insert it at the next index number in the array.
Other than this, we won’t worry about memory management.
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Create a class called Float. We’ll use it to model numbers of type float that are stored
in fmemory instead of real memory. The only instance data in Float is its own “address”;
that is, the index where its float value is stored in fmemory. Call this instance variable
addr. Class Float also needs two member functions. The first is a one-argument con-
structor to initialize the Float with a float value. This constructor stores the float
value in the element of fmemory pointed to by fmem_top, and stores the value of
fmem_top in addr. This is similar to how the compiler and linker arrange to store an ordi-
nary variable in real memory. The second member function is the overloaded & operator.
It simply returns the pointer (really the index, type int) value in addr.

Create a second class called ptrFloat. The instance data in this class holds the address
(index) in pmemory where some other address (index) is stored. A member function ini-
tializes this “pointer” with an int index value. The second member function is the over-
loaded * (dereference, or “contents of”) operator. Its operation is a tad more complicated.
It obtains the address from pmemory, where its data, which is also an address, is stored. It
then uses this new address as an index into fmemory to obtain the float value pointed to
by its address data.

float& ptrFloat::operator*()
{
return fmemory[ pmemory[addr] ];
}

In this way it models the operation of the dereference operator (*). Notice that you need
to return by reference from this function so that you can use * on the left side of the
equal sign.

The two classes Float and ptrFloat are similar, but Float stores floats in an array rep-
resenting memory, and ptrFloat stores ints (representing memory pointers, but really
array index values) in a different array that also represents memory.

Here’s a typical use of these classes, from a sample main():

Float var1 = 1.234;          // define and initialize two Floats
Float var2 = 5.678;

ptrFloat ptr1 = &var1;       // define two pointers-to-Floats,
ptrFloat ptr2 = &var2;       // initialize to addresses of Floats

cout << “ *ptr1=” << *ptr1;  // get values of Floats indirectly
cout << “ *ptr2=” << *ptr2;  // and display them

*ptr1 = 7.123;               // assign new values to variables
*ptr2 = 8.456;               // pointed to by ptr1 and ptr2
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cout << “ *ptr1=” << *ptr1;  // get new values indirectly
cout << “ *ptr2=” << *ptr2;  // and display them

Notice that, aside from the different names for the variable types, this looks just the same
as operations on real variables. Here’s the output from the program:

*ptr1=1.234
*ptr2=2.678

*ptr1=7.123
*ptr2=8.456

This may seem like a roundabout way to implement pointers, but by revealing the inner
workings of the pointer and address operator, we have provided a different perspective
on their true nature.
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